Temporal phase discrimination depends critically on separation

نویسندگان

  • Jonathan D. Victor
  • Mary M. Conte
چکیده

Temporal phase discrimination was measured as a function of spatial separation of the stimulus components. In contrast to many previous studies, phase discrimination thresholds were measured directly, rather than inferred from the ability to discriminate synchronous from antiphase stimuli, or from segregation or shape tasks. For abutting bars, relative phase thresholds were closely proportional to temporal frequency. The proportionality corresponded to a threshold temporal offset of 2.5-9.5 ms, across subjects. Introduction of a small gap (0.125 degrees or greater) led to a dramatic (3- to 7-fold) increase in thresholds for temporal phase discrimination, and thresholds were no longer proportional to temporal frequency. Insertion of a third bar filling the gap resulted in a recovery of the low thresholds, provided that its modulation was consistent with apparent motion across the three bars. Below 8 Hz, phase discrimination thresholds across three bars were equivalent to thresholds for two abutting bars. Above 8 Hz, phase discrimination thresholds for the three bar combination were lower than thresholds for two adjacent bars, implying that phase information was integrated across all three bars.Phase discrimination thresholds do not appear to reflect the properties of a single mechanism. Especially at high temporal frequencies, low thresholds for phase discrimination are closely tied to the presence of apparent motion. Temporal phase discrimination is markedly impaired by a small separation of stimulus components. Moreover, the inability to detect phase differences across gaps corresponds to the loss of phase-dependence of vernier acuity thresholds across gaps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Frequency Separation and Diotic/Dichotic Presentations on the Alternation Frequency Limits in Audition Derived from a Temporal Phase Discrimination Task.

Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alter...

متن کامل

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

Crowding is tuned for perceived (not physical) location.

In the peripheral visual field, nearby objects can make one another difficult to recognize (crowding) in a manner that critically depends on their separation. We manipulated the apparent separation of objects using the illusory shifts in perceived location that arise from local motion to determine if crowding depends on physical or perceived location. Flickering Gabor targets displayed between ...

متن کامل

Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI.

Second-order blind identification (SOBI) is a blind source separation (BSS) algorithm that has been applied to MEG and EEG data collected during a range of sensory, motor, and cognitive tasks. SOBI can decompose mixtures of electric or magnetic signals by utilizing detailed temporal structures present in the continuously recorded signals. Successful decomposition critically depends on the choic...

متن کامل

Actin polymerization serves as a membrane domain switch in model lipid bilayers.

The ability of cells to mount localized responses to external or internal stimuli is critically dependent on organization of lipids and proteins in the plasma membrane. Involvement of the actin cytoskeleton in membrane organization has been documented, but an active role for actin networks that directly links internal organization of the cytoskeleton with membrane organization has not yet been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2002